- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kumar, Golden (3)
-
Theeda, Sumanth (3)
-
Hasan, Molla (1)
-
Hu, Zhonglue (1)
-
Jabed, Akib (1)
-
Jagdale, Shweta (1)
-
Meduri, Chandra Sekhar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a novel technique to fabricate metallic nanowires in selective areas on a Si substrate. Thermoplastic drawing of viscous metallic glass from cavities etched in Si can produce metallic nanowires. The length and diameter of nanowires can be controlled by adjusting the drawing conditions without changing the Si mold. A thin metal shadow mask is stacked above the Si mold during thermoplastic drawing to fabricate the nanowires only in specific locations. The mask restricts the flow of metallic glass to predefined shapes on the mask, resulting in the formation of nanowires in selected areas on Si. An Al foil-based mask made by a benchtop vinyl cutter is used to demonstrate the proof-of-concept. Even a simple Al foil mask enables the positioning of metallic nanowires in selective areas as small as 200 µm on Si. The precision of the vinyl cutter limits the smallest dimensions of the patterned areas, which can be further improved by using laser-fabricated stencil masks. Results show that a single row of metallic glass nanowires can be patterned on Si using selective thermoplastic drawing. Controllable positioning of metallic nanowires on substrates can enable new applications and characterization techniques for nanostructures.more » « less
-
Theeda, Sumanth; Kumar, Golden (, Materials Letters)
-
Jagdale, Shweta; Jabed, Akib; Theeda, Sumanth; Meduri, Chandra Sekhar; Hu, Zhonglue; Hasan, Molla; Kumar, Golden (, Metals)This study summarizes the recent progress in thermoplastic drawing of bulk metallic glasses. The integration of drawing with templated embossing enables the fabrication of arrays of high-aspect-ratio nanostructures whereas the earlier drawing methodologies are limited to a single fiber. The two-step drawing can produce metallic glass structures such as, vertically aligned nanowires on substrates, nanoscale tensile specimens, hollow microneedles, helical shafts, and micro-yarns, which are challenging to fabricate with other thermoplastic forming operations. These geometries will open new applications for bulk metallic glasses in the areas of sensors, optical absorption, transdermal drug-delivery, and high-throughput characterization of size-effects. In this article, we review the emergence of template-based thermoplastic drawing in bulk metallic glasses. The review focuses on the development of experimental set-up, the quantitative description of drawing process, and the versatility of drawing methodology.more » « less
An official website of the United States government
